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ABSTRACT

In the study of linear elliptic systems of first order partial differential

equations in two independent variables, it has long been recognized that the

Bers and Beltrami systems play a special role. In this paper, a matrix

representation of classes of pseudo-regular functions which form a real linear

vector space is developed and used to further explore this role. In particular,

it is shown that if a, b, c, and d are H61d -continuous real-valued functions

defined in a domain A7 in the complex plane and such that 4bc - (a + d) > 0

in oC and F = u + iv is a solution of the elliptic system 4 defined by

(i) Ux = aVx + bV, (ii) -U y = cVx + dVy, then F may be represented by the

composition mapping goh where h is a homeomorphic Beltrami function and

g is a Bets function. Conversely, if f is analytic in 4&, one can find a

homeomorphic Bers function h and a Beltrami function g such that f = g.h

Finally, if the coefficients of Of are C 1, there exists a system o whose

solutions are uniquely determined by solutions of o and if f is a solution of

and g is the corresponding solution of .", the zeros of g are the critical

points of F



SOME RELATIONSHIPS BETWEEN BERS AND BELTRAMI SYSTEMS AND

LINEAR ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

W. V. Caldwell

1. Introduction. Much work has been done in the investigation of the properties

of solutions of linear elliptic systems of partial differential equations. The

most casual review of this work shows that the work of L. Bers has been of

primary importance. In particular, Bers defined a class of systems of partial

differential equations which the author has taken the liberty of labelling Ba-s

systems and showed that these systems are of fundamental importance. Another

class of systems which is equally important and which has been studied for

many years is the Beltrami systems. Solutions of these systems will be called

Bers and Beltrami functions respectively.

The purpose of this paper is to further investigate the topological and

algebraic properties of collections of Bers and Beltrami functions and to extend

somewhat the results of Bers in showing the connections between an elliptic

system (f of type (2. 1) and uniquely determined B and Beltrami systems.

Most of this work was accomplished by developing and exploiting a matrix

representation for the Jacobian matrices of an elliptic system o'of type (2.1)

In 1954, fuLs and McLauahlin proved that if V'is a vector space of real

2X 2 matrices with non-negative determinants and having the rank property,

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.



-2-- #354

then either I/is one-dimensional and isomorphic to the real numbers or I/is

two-dimensional and equivalent to the complex numbers. This result suggested

the possibility of a matrix representation of the Jacobian matrices of solutions of

an elliptic system of type (2.1) . In Section 3, it is shown that if * consists

of the Jacobian matrices of solutions of such a system defined in a domain A

in the complex plane, then there exists a uniquely determined matrix representation

of l/. Conversely, Theorem 3.1 shows that if I/ is a vector space over the

real numbers of Jacobian matrices with non-negative determinants, and having

the rank property and if I contains two linearly independent elements, then /

consists of solutions to a uniquely determined elliptic system of type (2. 1)

Solutions of a system el of type (Z. 1) are, of course, light and interior.

While such functions do not in general have derivatives, Theorem 3. 2 shows

that if the coefficients of o are d, one can associate with s$ a uniquely

determined system 4 * of type (3.18) such that if f is a solution of f there

corresponds a unique solution g of 40 whose zeros are the critical points

of f . Since Bers has shown that the zeros of a solution of '* are isolated

and have no interior limit point (in the domain Qof definition), it follows that

the solutions of 4 are pseudo-regular functions. In view of Bers' result, one

would like to conclude that solutions of a system of type (3.18) are light.

Unfortunately, one can find functions mapping 'yinto the real line which are

solutions of a system 4* of type (3.18)

In one of the classic theorems in topological analysis, Stow proved that

if f is light and interior in .9, there exists a homeomorphism h defined in A7



#354 -3-

and a function g analytic in h( A such that f =go h . In general, h

depends on f and one is led to wonder what conditions must be placed on two

linearly independent functions f and f2 defined in o which ensure that there

exist two functions gI and g2 analytic in h(O1 ) and such that f, = g o ho

i = 1, 2 . A partial answer to this question was given in 1938 by Kakutani who

showed that a necessary and sufficient condition for a collection of pseudo-

regular functions to form a ring is that they all be analytic functions of a fixed

pseudo-regular function. In an earlier paper, the author showed that such

collections are algebras of solutions of a uniquely determined Beltrami system.

One is led to suspect that if these conditions are relaxed somewhat, further

results might be obtained. In Theorem 4. 3, it is shown that if V is the set of

solutions of an elliptic system of type (2.1) defined in ,47 one can find

a homeomorphic Beltrami function h defined in .O and a bes system I(,

defined in h( sO) such that if f is an element of */, there exists a Bers

function g which is a solution of WI such that f = g e h . Conversely,

Theorem 4.4 shows that if h is a homeomorphic Bers function defined in &Y

there exists a uniquely determined Beltrami system 41 defined in h(0) such

that if f is analytic in 0' there exists a Beltrami function g, a solution of

41) such that f = g oh. Furthermore, every such composition mapping is

analytic in j'. This latter theorem yields an easy method of extending many

theorems about analytic functions to theorems about Beltrami functions. That

this is possible is, of course, no surprise since it is well known that Beltrami
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functions which are solutions of a Beltrami system 4' are analytic with respect

to a Riemannian metric determined by the coefficients of , .

In an earlier paper, it was shown that if or is a Bers system with C1

coefficients which has a harmonic mapping as a solution, then all solutions of

are harmonic mappings and the coefficients of or are harmonic conjugates.

In Theorem 4. 5, it is shown that if 4 is an elliptic system of type (2. 1) with

C1 coefficients which has only harmonic mappings as solutions, then 4f is a Bers

system.

The author would like to express his gratitude to C. T. Titus to whome he

is indebted for the original idea of the matrix representation and for the statement

and method of proof of Theorem 4. 2.
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2. Preliminary Definitions. All matrices considered will be 2 X 2 matrices

whose entries are H6lder-continuous real-valued functions defined in a domain

in the plane. If J is a matrix, we will denote the determinant of J by I

If f is a C' function defined in pO, we will denote the Jacobian matrix of f

by J(f) .

Def. 2. 1: A matrix J will be said to have the rank property if 1AI = 0

implies that the rank of J is zero.

Def. 2 2: A function f will be said to be Pseudo-reQular in .0 f E C

( IJ(f)I = 0, ( J(f) has the rank property, and T the set of critical

point in ,Ohas no interior limit point.

Now let 6Z be the set of all matrices with non-negative determinants, 12 the

set of all elements of a that have the rank property, 6 the set of all Jacobian

matrices in , C the set of all elements of 69 of the form

and the set of all elements of of the form

(1) a a>0 in 1'

Let a(x, y), b(x, y), c(x, y), and d(x, y) be H61der-continuous real

valued functions defined in 4'. A system of of first order partial differential

equations
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(2.) =a Vx + bVy

-U =cV +dV
y x y

is said to be elliptic if 4bc - (a + d) 2 > 0 and uniformly elliptic if a, b, c,

and d are uniformly bounded and there exists a positive number t such that

4bc - (a + d) 2 > i . We shall always assume that 4 is normalized so that

b > 0 . Two special cases of elliptic systems which are of particular interest

are Bers systems

Ux = aVx + bVy
(2.2)

-U =bV -aV
y x y

and Beltrami systems

Ux = aVx +bVy

(2.3)
-U =cV +aV

y x y

2
where bc-a =1 .

A function f = u + iv will be said to be a solution of (2.1) if f - C' and

if the pair (u, v) satisfy (2. 1). Solutions of (2.2) will be called Bers

functions (Bers calls them "pseudo-analytic functions of the second kind")

and solutions of (2.3) will be called Beltrami functions. If q) is the set of

Jacobian matrices of solutions to an elliptic system 4t of type (2.1), it is clear

that 0 forms a real linear vector space. Using Golomb's results, it is easy to

show that 11 is a maximal real linear vector space in & .
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3. Matrix Representation. In this section, we establish the matrix

representation of the set of jacobian matrices of solutions to an elliptic

system 4 of type (2.1) . This is accomplished by showing that one can find

matrices S and T in J depending only on the coefficients of such that

= S L T is a maximal linear vector space in Z and 1/C '2. Further, if

is a real linear vector space in I(containing two linearly independent elements

then 'V = 1 n 4 consists of solutions to a uniquely determined elliptic system

4. We will need several lemmas. Lemma 3.1 is classical but the details

of factorization are needed here.

Lemma 3.1: Let P be a matrix with I P1 > 0 . Then there exist unique

matrices S and T injand C n_d C. in C such that P =SC, =__T.

Proof: It will suffice to prove the existence and uniqueness of S and C,

It will be evident that the same kind of argument would prove the existence and

uniqueness of T and C. Let

P= ) S= and -

p21 p2 2 C

-l
where S and C are to be determined. Setting S P = C, we obtain

-1
(3.1) pa - P= =  p Pz

-i
(3.2) P12 - P2 2 - -P 2 1a
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or, multiplying by a and rearranging terms,

(3.3) P22 a + P21a p = PH

(3.4) P21a  " P22 a p= - P iz

2
Solving for a

(35) 2 PllP22 - PIZP21 - I
. 2 2 = 2 + °
P2 2 + P21 P2 2  21

Since IPI > 0, at least one of the terms in the denominator is not zero. We

assume P2 2 #0 . Then,

i =P 2 PC2 + pl= P2 P22PI X =P2 2 ,  and I -P2 1 .~l

222 22 2~

To show uniqueness, suppose that for some S in 4J and D in

1 D

we have P=SC SID sothat S -SCID
1 5Dsta l 1  D

Proceeding as in the proof of the existence of S and Cl, we obtain the

equations
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(3.6) X + 0

A necessary condition for the existence of nontrivial solutions for X and . is

(3.8) + ( + 0

But (3.8) holds if and only if a=a 1 and

The following lemmas are due to J. E. McLaughlin and C. J. Titus. Since

Lemma 3. 3 has not been published previously, its proof is included here.

Lemma 3. 2: Let i be a vector space in (a which contains two linearly

independent elements. Then there exists a air of matrices, P and Q, such

that [PQI>O and q. = Pa Q .

Proof: Titus and McLaugjhlin (8]

Lemma 3. 3: Let ' be as in Iemma 2.2. Then there exists a unique pair,

S and T, of elements of , such that

S C T

Proof: Consider the matrices P and Q in Lemma 3. 2. We define
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P if eIl >o
lj-if lp<o

f Qif IPI < 0

Then, by Lemma 3.1, there exist for P1 and QI unique factorizations

PI SC 1, QI=CT where C1 and Cz are in C and S and T arein ed.

Since L is aring, we have =PCQ SC CC 2 T =S CT . To show

uniqueness, we suppose there exist matrices S1, 82, TI, and T2 in such that

S I CTI= S2 C TZ .

Then, letting So- S- 1 S and T T T- Therefore, for
o 1 2 o

C in there exists C2 in E such that C :S o C 2 T But C ( t = 1) 2)

may be expressed in the form C = Xt I + t K where I is the identity matrix

and

Since we may pick C1 so that either k= 0 or p =0, it follows that S0 T0

and SKT arein C , hence (ST SKT) =8o - 1
00 0 0 0 0 0

and (SoT )-I (S KT) T I KT * It will be sufficient to show
0 0 0 0 0 0

that S must be the identity matrix. The same argument can then be applied to

show that T must also be the identity matrix. Let S KS- 1 = D where
0 0 0



#354 -11-

S= ()andD

then

- 1

From -1 -1 - it follows that P=0 and a= 1 so that

S =I.

Theorem 3. 1: Lt /be a vector space of elements of 4 such that 'Tcontains

two everywhere linearly independent elements. Then V/ consists of the Jacobian

matrices of solutions of an elliptic system A of type (2. 1)

Proof: The proof will consist of the construction of the desired elliptic

system. By Lemma 3. 3, there exist matrices S and T in such that V/ SC T

Let

S =, T =,and let V = y

v

Then there exists C in C ,
0 = X( _L
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such that

yax + y p (a6 +I+ (06 --

Yk- -L- + 6-

a a y a

so that

(3.9) u. = yak + y 3 li

(3.10) uy =(a6+ 1X +(13-y1

yy y

(3.11) v =W
x a

(3.12) v x-+
Y a

Solving (3.11) and (3.12) for X and ,

(3.13) X =-6avx + Y&VVy, and

(3.14) v
Yx

Substituting into (3.9) and (3.10) ,

262
(3.15) u = a(3- y6)vx +a 6 2v y

(3.16) -U 2= (62 + 1)v - a((+ ay6)vy
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If we seta=aP-ay6)b=ay c=a2  6+ y, andd =a(+ a6), then

2 4
4bc -(a+d) = 4a > 0

Note that a, b, C, and d depend only on the elements of S and T

Further, if T=I, y = I and 6 = 0 so that in this case, b c and a =-d

and the system of partial differential equations thus determined is a Bars system.

On the other hand, for S = I, a= l and =0 and in this case, a = d and
2

bc - a I so that the system of equations becomes a Beltrami system.

Conversely, if O7 is the set of Jacobian matrices of solutions of (2. 1), a simple

computation yields the elements of S and T as functions of the coefficients

of the system of partial differential equations. If a, b, c, and d are the

coefficients of an elliptic system of type (2.1) and a, , y , and 6 are

the corresponding elements of S and T, it is obvious that the continuity and

differentiability properties possessed by all the functions a, b, c, and d

are also possessed by a, P, y, and 6 . It is easy to show that the converse

also holds.

Finally, any element of 4 determines two distinct elliptic systems, one

Beltrami and one Bers.

Titus and McLauahlin have shown that 1; is a maximal real linear vector

space in A and that if V is any real linear vector space in d3 , then 4W is

either one-dimensional and equivalent to the field of real numbers or is two-

dimensional and isomorphic to . It follows that if I/ = S C T, S and T

in . , ,. is maximal in , and = r b) is maximal in 4)
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For S and T determined by an elliptic system e of type (2.1), it is

clear that there exist elements C in C such that SCT is not a Jacobian

matrix and therefore does not correspond to a solution of r . If

j = C1 DU~~ ~- l SCT

au au2

a sufficient condition for J to be a Jacobian matrix is that - = - andGy ax

av &v
al - iV . We use this to impose conditions on C An easy computationBy ex

shows that if the pair (X , u) satisfy the system

a Yx+ YPI' -L Ra('6 + Py1 ))+ (P8-I )I L]

(3.17)

a (-Y-1 14 [a -1 Y-1 X+ 6a1 I&]

J = SCT is a Jacobian matrix. For the sake of simplicity, we will assume that

the elements of S and T, hence the coefficients of the corresponding elliptic

system 4' , have partial derivatives (at least in the L2 sense). We are led

to the following theorem.

Therem .EI: let S and T be elements of A,

S- .4 T =(
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and let f be the corresponding elliptic system of type (2.1) . Then there

exists a corresponding elliptic system o* of the form

2
kx y6FLx + y +Ak +Bl

(3.18)
-)L = (6 2+ y-2) x - y6 y+ CkL + E

where A, B, C, and D are rational functions of a, -y 6, and their

partial derivatives, such that if f is a solution of ? there exists a unigue

solution f * of P such that the zeros of f* are precisely the critical Points

of f . Conversely, if f* is a solution of t*, f* determines a solution f

of_ , uniquely (up to an additive constantI.

Proof: * is obtained by simply carrying out the indicated differentiations

in eq. (3.17) and solving for kx and X . The computations are straight-

forward but very tedious and will be omitted. One obtains

-l -1
(3.19) Aaa -1 Yx

-1 2 -1
(3.20) C= a +y y -a - V -I

y y X x

-2 -2

-l -1 -1 -2 -1 -3 -1

(3.21) Da P - Y 6P x +Y a a Y 6 - 6 y aya a

2a - l  -l -1 -2
+ 66 x- 6 a a +Pa a - P6y a ax
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If f = u + iv and f = X + il are corresponding solutions of (' and 4*

respectively, it is obvious that the zeros of f* are precisely the critical points

of f

Elliptic systems of type (3.18) have been studied by Bers and Nirenbera.

In particular, they have shown that if f is a solution of a uniformly elliptic

system of type (3.18), f not identically zero, then the zeros of f are
* *

isolated and the index of f at each zero is positive. Furthermore f is

completely determined by its values on any infinite set of points having a limit

point in "

Note that if o is a Beltrami system with constant coefficients, = *

If f is a Bers system, ' is of the form

Xx = y+A +B L

(3.19)
-Xy=Lx + o C +DL

and if the coefficients of the Bers system are constants, ' is Just the Cauchy

Riemann equations. Systems of the form (3.19) were studied by Carleman.
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4. Some Conseauences. From the remarks of the preceding section, it

follows easily that if of is an elliptic system of type (2. 1) such that the

corresponding system r* has uniformly bounded coefficients on every compact

subset of /7 , solutions of or are pseudo-regular. In an earlier paper, it

was shown that if OW is a collection of pseudo-regular functions containing

two linearly independent functions and such that for f and g in %V , 9f + ing

is in IV for arbitrary complex numbers g and n1 , then IV consists of solutions

to some Beljrami system. One cannot expect so strong a result in the more

general systems of type (3.18) . The condition that the set g, * of solutions

to an elliptic system of * of type (3.18) form a vector space over the complex

numbers may be shown to be equivalent to requiring that a and A satisfy a

system of two non-linear first order equations. We can, however, prove a

weaker theorem.

Theorem 4.1: Let S and T be elements of J and let * be the

corresponding elliptic system of tye (3.18) . V S is a constant matrix, the

solutions of g * form a vector space oyer the complex numbers.

Proof: We need only show that if S is a constant matrix and X + iJ. is

a solution of ,f* , then - + iA = (i) +i4) is also a solution. Let S bea

constant matrix. Then 4* is of the form

X x=-Y 6 x + YILy + 1 Yx +Y(Yy-6x)a

-32(4.1) -Xx=(62+ 2) Lx-¥6Ry+ 2 (y-¥6x 6 x) X

-(y-3 yx + 6-Yy - 66 x)1 .L
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Solving for x and .y in (4.1), we obtain

2 -Z -2-
- Lx = -y6k x + Y2y- Y Yx + V(y y - 6 x )X

(4.2) ILy = (62 + Y-2) x - y -6X y-YYy _ y6Y x _6yx)-

_{y- 3 -X+6 66 x

Therefore, -p. + i is a solution of o * .

If f = I + iv is a solution of an elliptic system of type (2.1), it is well

known that f is quasiconformal a. e. and the dilatation D of f is given by

2 2 2 2u +u +v +v ]fi i
x Y x V LUL .
u" v - u v -T-xf)l D +Dxy yx

In general, F f) depends on f and cannot be expressed solely as a function of

the coefficients of 4 . A simple computation, however, shows that if f is

either a Bers system or a Beltrami system, E[f) depends only on the coefficients

of f . The following theorem shows that these systems are the only ones

with this property.

Theorem 4. 2. Let W1 be the set of solutions of an elliDtio system 40 of

tve (2. 11, T the set of lacobian marices of elements of 7I/ , and let S and

T b2the elements of j such tha 9C S C T . For ft 9a' , I1f) depends

only on the coefficients of 4 if and only if at least one of the matrices S and

T is the identity matrix.
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Proof: Let J(f) = SCT where

S= 0= (), and T=

Then

E (f)= RJI HSCTI
ISCTI X2 +R2

and

SCT =(-y 2 2 a 262 + 2ap6 -l+ P2 -2+ a-2-2k 2

(4.3) + (apy2+ a36 2a 26 2 +P 6y - apy-2 +6ay-2-1 )

22 262 - 2 -2 2 -2 62-22+(Py¥ + 26 -Zat6y- + a +y ¥a +6 a21 2 .

In order for E(f) to depend only on S and T, the coefficient of the X L term

must vanish and the coefficient of the X 2 term must equal that of the 2 term.

These conditions are equivalent to the equations

(4.3) a204+ N26 _ 12 = y6(Q 4 2 2 2 1

(4.4) (a4 _ 2_ 4+ 2 2+4a3 6 =0

Suppose P# 0 . Then from (4.3) and (4.4)

-3-l1c4 a22 2 6
(4.5) y6a -- [(a 4_ -1)2+ 4af 21_0

so that we must have 6 =0 . If 6 0, it follows from (4.3) that y =1 so
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T=I ,and o( is aBers system. Conversely, if 0=O, a= I and S = so

that is a Beltrami system.

If #i and are topologically equivalent domains and h is a

homeomorphism of 4 onto 4' then for f defined in h induces a function

f in f = foh It follows that if is an elliptic system defined in

j0, h induces an elliptic system of in ad " Furthermore, if !1/ is the

set of solutions of , h maps W€ into a collection W I of light interior

functions defined in 00 " [It is not true, in general, that 1 will consist

of solutions to a . In an earlier paper, it was shown that if h is conformal,
a necessary and sufficient condition for WI1 to be the set of solutions to

is that ' (hence ) be a Bers system]. These considerations, together

with the matrix representation concept, suggest the following factorization

theorems.

Theorem 4. 3: Let i be an elliptic system of type (2. 1), V the set of

solutions of -r and S and T the corresponding elements of . Let ,

and f.' be the Bers and Beltrami systems corresponding to S and T respectively

and let h be a univalent solution of of 2 if 4l is the Bers system induced

in 10= 1h( ') by the Beltrami function h, then for f e 'W there exists a

Bers function g satisfying 17 such that f = goh .

Proof: In view of the matrix representation, we can find functions a, j,

y, and 6 such that e is of the form
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Ux = a(P -ay6) V x+ a 2y2 V

(4.6) -u y = a 2 (62 + Y-2 )v - Q(P + ay) vy

Then fl is of the form

U x = aV x + a2V y

4.7) -U y = a V = x _ + Vy

and ' 2 is of the form
Ux =-6Vx + Y2Vy

(4.8)
-Uy = (62 +Y2 v --sv

Let f = u +iv be a solution of and let h = p + iq be a solution of 402

Then is of the form

9; " P +a2

(4.9)
- 2 -

-U (6 +y )V qS

where a = a h and = P h The proof of the theorem will be accomplished

by showing that if g(p, q) =r+is is defined by g = f h " , then g isa

solution of 4,1 . For g so defined, r(p(xy), q~xy)) = u(x,y) and

s(p(x,y), q x y)) = v(x, y) . Using the chain rule o rppx w rqqx = uax



-22- #354

rppy +rqqy =uy, sppX + sqqx  and sppy sqy =v . Since h = p+ iq

is a univalent solution of 2' pxq - pyqx * 0 and we can solve for rp and

r . We haveq

(4.10) rp = (pxqy - pyqx)- I (uqy - uyqx)

and since u + iv is a solution of ,

(4.11) r p=(pxqy -pyqx)-l (p-a6)Vx+ 22 2(62+ )qx

=(p xo- pyqx )-  [([ --y66)qy - a2(62 + -Y2 )qxlv

Substituting for vx and vy, the term in brackets becomes

(4.12) [a(p - ay6)q + a22 + Y-2)qx] (sppx + sq x)

2 2

+ [a y q- a(p ay6)qx ] (s ppy + sqqy)

Since p + iq is a solution of Wk2 , pxq-pyqx=(6'+ y-2 2 2 2

and (4.12) reduces to

(4.13) (px - pyq) (ps p + a 2 s q

Noting that a(p,q) = a(x,y) and p(p,q) = p(x,y),
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(4.14) rp = s +a S

Using the same procedure, we also obtain

(4.15) -r q o s p s

Therefore r + is is a solution of Z' and this completes the proof.

If & in the theorem above consists of the Cauchy-Riemann equations,

then and will also consist of the Cuchy-Riemann equations and in

this case the theorem is trivial. One can, however, relate analytic functions

with Bers and Beltrami functions.

Theorem 4.4: Let j be a Bers system defined in Jandlft h bLI

univalent solution of . Then there exists a uniauelv determined Beltrami

system 41 defined in kj = h() suchthatif f is analytic in thee

exists a Beltrami function g satisfvina and such that f = g " h

Conversely, if g if any solution of or, g e h ic .

Proof: Let of be the Bes system U1 = PV + a 2Vy, -U. -V -a3Vy

a>0, and let h = p + iq be a homeomorphic solution of or . Define the

functions y and 6 in - h(4*') by y(p, q)- a( P,q),APq)) ,

6(p, q) = -po(p, q), y(p, q)) and let 4l be the Beltrami system Up = Y6Vp + Y 2Vq

- Uq = (6 2 + !vp -Y6Vq If g isa solution of it is easy to verify that

Y
the composite function f = goh is analytic in 4. Conversely, if f is analytic

in 0 and we define g = f oh- l , a simple computation similar to that in the proof
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of the preceding theorem shows that g is a solution of

The following corollary is known but is included for the sake of completeness.

Cor. 4.1 : If h is a univalent Bers function, h- l is a Beltrami function.

Proof: In the preceding theorem, choose f to be the identity mapping.

Note that Theorem 4. 3 may be applied to the problem of mapping a second

order elliptic equation into canonical form. Let A, B, and C be real-valued

C functions in fi such that AC-B 2 >0, A>0 . If we define functions4 2 2Z 2

a, Y, and 6 by a =AC - , ay A -2 y6 =B, and a2 (62 Y1 C

it is easy to verify that these functions are well defined providing we pick y to

be positive. A simple computation shows that if h = p + iq is a homeomorphic

solution of the Beltrami system

S= - 6Vx + Y Vy, -U =(6 + V - ,6VUx x-~6 y y +Yj2Vx-y

h maps the elliptic equation

(4.16) C9xx + 2Bvxy + A4yy + Dx + E9y + FV = 0

into the form

(4.17) Opp + 1qq + Htp + K q L = 0

and If D, E, and F are bounded and continuous and a2 and the Jacobian

determinant of h are bounded away from zero, H, K and L are bounded

and continuous in h(,j} )
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In an earlier paper, it was shown that if f is a JL system with C1

coefficients o and T and which hasa harmonic mapping as a solution, then all

solutions of a( are harmonic and T + io- is analytic. We want to show that

if fi is an elliptic system of type (2.1) such that all solutions are harmonic,

then or is a Bers system. Before proceeding, however, a few preliminary

remarks are necessary. If o is an elliptic system of type (2.1), it follows

from the extended Riemann mapping theorem (Bers [2]) that oa has as many

linearly independent solutions as we want. Linear independence of two solutions

f = u + iv and g = p + iq does not, however, preclude the possibility that at

some point z in vxqy - Vyq = 0 . One can show that a necessary and

sufficient condition that the Jacobian of some real linear combination af + Pq

vanish at z0 is that Vxqy - Vyq x = 0 at that point. If 4W is the set of all

functions analytic in &' it is easy to show that for z E y one can find1 0
f =u+Iv and q=p+iq in Wv such that Vxqy -vyqx*O at z = z0

(It follows easily that the same statement is true for Beltrami functions). I have

been unable to prove the theorem for the general case where V consists of

the solutions to an elliptic system o of type (2.1). The following lemma, however,

is an immediate consequence of the remarks on analytic functions.

Lemma 4. 1: Let 0" be a simply connected domain and let ( be an elliptic

system of type (2.1) defined in o and such that all solutions of or are

harmonic. Then for z 0 in 4ythere exist solutions f = u + iv and g = p + iq

suchthat vxqy -vyq x O at z =z 0 .
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The proof is trivial and will be omitted.

,ema 4.2: .Let AO be a simiolv connected domain and let be aLJ

01112112 sYstem Of tv2§e (Z. 1) W=C coefficients and such that all solutions

of t4 are harmonic mappinos, L2. 4D* be the corresponding system. of tvoe

(3.18). Then forz 0E0 gj e > 0 there exists a solution X~ +i * j .3"

an ion z I L& N (z0 , Y) (=hu F - neighborhood of zo) suh ha z

a zer ofX ilL but is not a critical point

Vof: Let f =u +iv gu +iv, and h = p + iq be linearly independent

solutions of 4~ such that vxqy - v yqx * at z = zon hoe6<fsc

that v xq y- v q x*0 in N(z 0 , 6) . At z = z, the equations Vx=A 7q

V = JV + Ayuniquely determine A and A~ so that the function

F = f - A1g - )n h ha s a critical point at z0and the corresponding solution of

X"" + has azero at zo. We may, however, have the unhappy

situation that at Ywe also have v =Iv ?fxanIV +y q~,

In this case, X~ + 4L& will also have a critical point at .o Define functions

1and f" in N(z 0 , 6) by the equations V x = Ivx+ 7ncxl v y=IV y + -m"
2 1

Since solutions of -(' are at least C ,Aand ';A are at least C . It is

trivial to verify that A and -Ii also satisfy the equations Z. = Aux + p. and

u y= lu y+ j py . If at some point in N(z , 6) the equations

vx =Axx ,c~ vy =Av + and u =Au +y n

yyy y

an u 1py = 0 and it follows that at this pointAI =AI =7n = 7n o0
y y y y y y
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But if this happens at every point in N(z 0 , 6), we must have A and fn constant

and this contradicts the assumption that f, g, and h are linearly independent.

Let z1 be a point in N(z 0 , 6) such that the above equations do not hold at

z = z, . Then for A = .(zI) and 71 = 74 (zl) the solution of o* corresponding

to F = f - Ag - 'Mh has a zero at z 1 but does not have a critical point at

that point.

Theorem 4.5. Let ,0'and of be as in Lemma 4. 2. Then W is a Bes

system.

Proof: Let S and T be the elements of J determined by the coefficients

of . For f a solution of o', let % + I I be the function determined by

J(f) = SCT . As we have already seen, k + * must satisfy the system

xx x + y

14.18)

A y - 2+ Y-21 x - sRy + Ck + DI

It is easy to verify that since f is harmonic, X + 4A must also satisfy the

system

"x xy6lLx+(6 +fy )o +AX + BjI

(4.19J

A y ILx + Y6Ly + C. + LA

where A, B1 C, and D are continuous rational functions of a, O, y, 6, and

their partial derivatives. If z1 is a zero but not a critical point of k + 1,& ,
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(4.18) and (4.19) require that 6 0 and y = 1 at z1 . The continuity of

y and 6 and Lemma 4.2 then insure that 6 a 0 and y = 1 so T is the

identity and o is a Bers system.

Note that if is a Bers system whose solutions are harmonic mappings,

the associated system o* is of the form

(4.20)

y x r 2cro

&tKs and NirenberQ have shown that if g = X + il is a solution of a system o

of type (3.18), there exist a complex valued function s(z) and an analytic

function h(z) such that g(z) = es(z) h(z) . In general, s(z) depends on

g(z) . It is easy to verify that s(z) must satisfy the equation g s_ = g_

z z

If, however, d° * is of form (4.20), we are in better shape.

Theorem 4.6. Le o* be a system of type (4.20) where a- is a Positive

harmonic function and let s = p + iq be a solution of the system

0*

=x qy +

(4.21)

-Py 20-

g = X + *, is a solution of of* (z) = es(z) g(z) is analytic. Conversely,

if h is analytic in ,Oj e s z) h(z) is a solution of
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Proof: For g and s as above and h(z) = e - s ( z) g(z), it is trivial to

verify that h- 0 and h is analytic. Conversely, if h is analytic, let

s(z h(z) Then g =es(z) h(z) s_ =(. iL})s_ = (k +iL'+ i

zz z 4o-4o

and g is a solution of or

Note that if p + iq is a solution of (4. 21), q is harmonic and if ,'Ois

simply connected, every harmonic function q determines a solution of (4.21)

In particular, if we pick q=0, p=Llni and ep = T , it follows that if

h is any analytic function, 47 h is a solution of o' * . It is easy to see

that all such solutions can be represented in this form. Furthermore, if r is

the Bers system associated with f * and h = (p + iti is analytic, the solution

(unique up to an additive constant) of P determined by %/- h can easily be

represented as a line integral. For example, if 9 = I and 4 = 0, the solution
xof odetermined will be f crdx +iy.
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